Mathematical Model of an Eddy Current Brake
Based on: Wouterse, J.h. “Critical Torque and Speed of Eddy Current Brake with Widely Separated Soft Iron Poles.” IEE Proceedings B Electric Power Applications, vol. 138, no. 4, 1991, p. 153., doi:10.1049/ip-b.1991.0019.
Definitions
- ρ, The specific resistance of the disk material/n
- d, (m) The thickness of the disk
- D, (m) The diameter of the Iron pole or a the Diameter of a circle of equal area if the pole used is not circular
- χ, (m) The air gap between pole faces including disc thickness
- ξ, The ratio of zone width, in asymptotic current distribution around poles, to air gap
- c, The ratio of total contour resistance to resistance of contour part under pole; c = 0.5 if disc has infinite diameter
- v, (m/s) Tangential speed, measured at centre of pole
- , (m/s) The critical speed, i.e., speed at which exerted force is maximum
- , (N) The force of electromagnetic origin exerted by the polea on the disk
- , (N) The maximum value of the exerted force as function of v
- , () The magnetic field when v = 0
- R, (m) The distance from the centre of disc to centre of the magnet
- A, (m) The radius of the disk
- , (Nm) The torque of electro magnetic origin
Parameteres
xi = 1 % We cannot compute a value for the proportionality constant however it is close to unity
Equations
For lower speeds the caused by the eddies created by the moving disk passing throught the magnetic field generated by the pole magnets follows the rule . where, However for higher velocities of the disk the induction of the magnetic field begins to lose effect as the eddies it generates in the disk reach the same Current. Thefore to model the falloff of as v increases the systems can be represented by this rule. assuming, and,
Calculations
rpm = 0:1:180;
rpm = 1×181
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
v = rpm * 2 * 3.145 * R;
v = 1×181
0 0.3931 0.7863 1.1794 1.5725 1.9656 2.3588 2.7519 3.1450 3.5381 3.9312 4.3244 4.7175 5.1106 5.5038 5.8969 6.2900 6.6831 7.0762 7.4694 7.8625 8.2556 8.6487 9.0419 9.4350 9.8281 10.2212 10.6144 11.0075 11.4006 11.7937 12.1869 12.5800 12.9731 13.3663 13.7594 14.1525 14.5456 14.9388 15.3319 15.7250 16.1181 16.5113 16.9044 17.2975 17.6906 18.0837 18.4769 18.8700 19.2631
c = 1/2 * (1-1/4 * 1 / ((1+R/A)^2 * ((A-R)/D)^2));
F_e_slow = 1/4 * pi/rho * D^2 * d * B_0^2 * c * v;
F_e_slow = 1×181
0 0.0030 0.0060 0.0090 0.0120 0.0150 0.0180 0.0210 0.0240 0.0270 0.0300 0.0330 0.0360 0.0390 0.0420 0.0450 0.0481 0.0511 0.0541 0.0571 0.0601 0.0631 0.0661 0.0691 0.0721 0.0751 0.0781 0.0811 0.0841 0.0871 0.0901 0.0931 0.0961 0.0991 0.1021 0.1051 0.1081 0.1111 0.1141 0.1171 0.1201 0.1231 0.1261 0.1291 0.1321 0.1351 0.1381 0.1412 0.1442 0.1472
v_k = 2 / mu_0 * (1/(c*xi))^1/2 * rho/d * (chi/D)^1/2;
F_e_hat = 1 / mu_0 * (c/xi)^1/2 * D^2 * B_0^2 * (chi/D)^1/2;
F_e_fast = F_e_hat * (2./ (v_k./ v + v * v_k^-1));
F_e_fast = 1×181
0 0.0019 0.0038 0.0057 0.0076 0.0094 0.0112 0.0129 0.0146 0.0162 0.0177 0.0192 0.0206 0.0220 0.0232 0.0244 0.0255 0.0266 0.0275 0.0284 0.0292 0.0299 0.0306 0.0312 0.0317 0.0322 0.0326 0.0330 0.0333 0.0336 0.0338 0.0340 0.0341 0.0342 0.0343 0.0343 0.0343 0.0343 0.0343 0.0342 0.0341 0.0340 0.0339 0.0338 0.0336 0.0335 0.0333 0.0331 0.0329 0.0327
Tau = F_e_fast * R;
Tau = 1×181
0 0.0001 0.0002 0.0004 0.0005 0.0006 0.0007 0.0008 0.0009 0.0010 0.0011 0.0012 0.0013 0.0014 0.0015 0.0015 0.0016 0.0017 0.0017 0.0018 0.0018 0.0019 0.0019 0.0019 0.0020 0.0020 0.0020 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 0.0020
Graphs
title('Torque per RPM of a Eddy Break');
legend('Initial Model', 'Updated Model')