Mathematical Model of an Eddy Current Brake

Table of Contents
Based on: Wouterse, J.h. “Critical Torque and Speed of Eddy Current Brake with Widely Separated Soft Iron Poles.” IEE Proceedings B Electric Power Applications, vol. 138, no. 4, 1991, p. 153., doi:10.1049/ip-b.1991.0019.

Definitions

Parameteres

%Constants
mu_0 = 1.256 * 10^-6
mu_0 = 1.2560e-06
xi = 1 % We cannot compute a value for the proportionality constant however it is close to unity
xi = 1
% Testing rig paramaters
rho = 1.782 * 10^-8
rho = 1.7820e-08
d = 4*10^-3
d = 0.0040
D = 0.001256
D = 0.0013
chi = 5 * 10^-3
chi = 0.0050
B_0 = 0.2344
B_0 = 0.2344
R = 0.025 + 0.075 / 2
R = 0.0625
A = 0.1
A = 0.1000

Equations

For lower speeds the caused by the eddies created by the moving disk passing throught the magnetic field generated by the pole magnets follows the rule
. where,
However for higher velocities of the disk the induction of the magnetic field begins to lose effect as the eddies it generates in the disk reach the same Current. Thefore to model the falloff of as v increases the systems can be represented by this rule.
assuming,
and,

Calculations

rpm = 0:1:180;
rpm = 1×181
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
v = rpm * 2 * 3.145 * R;
v = 1×181
0 0.3931 0.7863 1.1794 1.5725 1.9656 2.3588 2.7519 3.1450 3.5381 3.9312 4.3244 4.7175 5.1106 5.5038 5.8969 6.2900 6.6831 7.0762 7.4694 7.8625 8.2556 8.6487 9.0419 9.4350 9.8281 10.2212 10.6144 11.0075 11.4006 11.7937 12.1869 12.5800 12.9731 13.3663 13.7594 14.1525 14.5456 14.9388 15.3319 15.7250 16.1181 16.5113 16.9044 17.2975 17.6906 18.0837 18.4769 18.8700 19.2631
c = 1/2 * (1-1/4 * 1 / ((1+R/A)^2 * ((A-R)/D)^2));
c = 0.4999
F_e_slow = 1/4 * pi/rho * D^2 * d * B_0^2 * c * v;
F_e_slow = 1×181
0 0.0030 0.0060 0.0090 0.0120 0.0150 0.0180 0.0210 0.0240 0.0270 0.0300 0.0330 0.0360 0.0390 0.0420 0.0450 0.0481 0.0511 0.0541 0.0571 0.0601 0.0631 0.0661 0.0691 0.0721 0.0751 0.0781 0.0811 0.0841 0.0871 0.0901 0.0931 0.0961 0.0991 0.1021 0.1051 0.1081 0.1111 0.1141 0.1171 0.1201 0.1231 0.1261 0.1291 0.1321 0.1351 0.1381 0.1412 0.1442 0.1472
v_k = 2 / mu_0 * (1/(c*xi))^1/2 * rho/d * (chi/D)^1/2;
v_k = 14.1216
F_e_hat = 1 / mu_0 * (c/xi)^1/2 * D^2 * B_0^2 * (chi/D)^1/2;
F_e_hat = 0.0343
F_e_fast = F_e_hat * (2./ (v_k./ v + v * v_k^-1));
F_e_fast = 1×181
0 0.0019 0.0038 0.0057 0.0076 0.0094 0.0112 0.0129 0.0146 0.0162 0.0177 0.0192 0.0206 0.0220 0.0232 0.0244 0.0255 0.0266 0.0275 0.0284 0.0292 0.0299 0.0306 0.0312 0.0317 0.0322 0.0326 0.0330 0.0333 0.0336 0.0338 0.0340 0.0341 0.0342 0.0343 0.0343 0.0343 0.0343 0.0343 0.0342 0.0341 0.0340 0.0339 0.0338 0.0336 0.0335 0.0333 0.0331 0.0329 0.0327
Tau = F_e_fast * R;
Tau = 1×181
0 0.0001 0.0002 0.0004 0.0005 0.0006 0.0007 0.0008 0.0009 0.0010 0.0011 0.0012 0.0013 0.0014 0.0015 0.0015 0.0016 0.0017 0.0017 0.0018 0.0018 0.0019 0.0019 0.0019 0.0020 0.0020 0.0020 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 0.0020

Graphs

plot(rpm, F_e_slow)
hold on
plot(rpm, F_e_fast)
hold off
xlabel('RPM');
ylabel('Torque');
title('Torque per RPM of a Eddy Break');
xlim([0 180]);
ylim([0 0.5]);
legend('Initial Model', 'Updated Model')